Journal of Thermal Analysis, Vol. 40 (1993) 79-84

HIGH-TEMPERATURE THERMAL ANALYSIS STUDY OF THE REACTION BETWEEN MAGNESIUM OXIDE AND SILICA

S. A. Mikhail and P. E. King

MINERAL SCIENCES LABORATORIES, CANMET, ENERGY, MINES AND RESOURCES CANADA, OTTAWA, ONTARIO, K1A OG1, CANADA

The reaction between SiO₂ and MgO at temperatures up to 1500° C was studied using thermal analysis, with X-ray diffraction being used to identify reaction products. The reaction is slow and results in the formation of Mg₂SiO₄ and MgSiO₃, with minor amounts of SiO₂·nH₂O and residual amounts of unreacted SiO₂ and MgO. Complete reaction of the starting materials to form Mg₂SiO₄ can only be achieved by maintaining the mixture at 1500°C for extended periods of time (> 1 h).

Keywords: high-temperature DTA, magnesium oxide, silica, thermal analysis, XRD

Introduction

Forsterite (Mg₂SiO₄) is a widely used refractory material with a fusion point of about 1900°C. It may be produced by the thermal decomposition of crysotile asbestos, Mg₃(Si₂O₅) (OH)₄ [1]. In the MgO-SiO₂ binary system [2], two stable compounds, namely forsterite (Mg₂SiO₄) and enstatite (MgSiO₃), exist. Forsterite, formed by this route, however, always seems to be accompanied by enstatite, which has a fusion point of about 1550°C and consequently limits the practical applicability of the forsterite product. The present investigation examines the reaction of SiO₂ with MgO in an attempt to gain more understanding of the reaction route and to identify a practical thermal treatment that would lead to the formation of forsterite alone.

Experimental

The starting materials were reagent-grade MgO and high-purity spectroscopic-grade SiO₂ powders. A DuPont 9900TA system with HTDTA and 951TGA

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

modules was used. In the experiments, 20-40 mg samples were heated at 20 deg/min in platinum crucibles to the desired temperature in helium flowing at 50 ml/min. Reaction products were identified by X-ray diffraction.

Results and discussion

Figure 1 shows the DTA curve of the silica starting material, with the characteristic reversible α - β quartz polymorphic transformation appearing at about 573°C. Figure 2 shows the DTA curve of MgO; an endothermic peak at 328°C corresponds to dehydration of Mg(OH)₂. As this was a significant peak, thermogravimetry (TG) was carried out to determine the amount of hydroxide present. The TG curve (Fig. 3) indicates a total weight loss at 400°C of about 10%, corresponding to about 30% Mg(OH)₂ in the sample. The dehydroxylation of magnesium hydroxide takes place according to the following scheme:

$$Mg(OH)_2 = MgO + H_2O$$
(1)

Solid mixtures of the two reagent-grade materials were prepared and subjected to different heating schemes in the HTDTA module. Figure 4 shows a reproducible DTA curve for a mixture of MgO (corrected for contained hydroxide) and SiO₂ with a molar ratio of 1.8:1, heated to 1500°C. This MgO/SiO₂ ratio is lower than that required for the formation of Mg₂SiO₄. In addition to the endothermic peaks due to dehydration of magnesium hydroxide and the polymorphic transformation of quartz, a reproducible endothermic baseline drift is detected, starting around 1250°C. XRD analysis of the product (Fig. 5a) indicated the presence of MgO, SiO₂, Mg₂SiO₄, SiO₂·nH₂O and MgSiO₃. These results indicate that the reaction of MgO with SiO₂ is not complete even after

Fig. 1 DTA curve for the SiO₂ starting material

heating the mixture to 1500°C, and that there may be another reaction taking place above 1250°C as indicated by the endothermic drift of the baseline above this temperature.

Fig. 2 DTA curve for the MgO starting material

This experiment was repeated using MgO/SiO_2 mixture with molar ratio of 2.7:1 (more MgO than stoichiometrically required for the formation of Mg_2SiO_4). A similar DTA curve was obtained and XRD analysis of the product indicated the presence of the same constituents detected in the previous experiment, but with perhaps somewhat less SiO₂ (Fig. 5b).

A similar experiment was carried out using a stoichiometric mixture of MgO/SiO₂ (2:1). This time, after heating to 1500°C, the sample was maintained isothermally for an hour. A DTA curve similar to that in Fig. 4, except for an isothermal portion, was obtained. XRD analysis of the product indicated the presence of Mg₂SiO₄, MgO, MgSiO₃ and minor amounts of SiO₂· nH_2O . Significantly, no SiO₂ was detected (Fig. 5c).

Fig. 3 TG curve for the MgO starting material

81

Fig. 4 DTA curve for a MgO/SiO2 mixture with a molar ratio of 1.8:1

In a final experiment, the magnesium oxide starting material was pre-dried for an hour in nitrogen to decompose the contained hydroxide and was then mixed with SiO₂ in the molar ratio 2:1. The mixture was heated to 1200° C (before the onset of the endothermic drift) at 20 deg/min and was held isothermally at this temperature for one hour. The DTA curve was identical to that in Fig. 4 up to 1200° C except for the absence of the dehydroxylation peak. XRD analysis of the product indicated the presence of the same constituents as those found in the sample heated to 1500° C, but with a higher silica content (Fig. 5d).

In the temperature range of interest, $1000^{\circ}-1500^{\circ}$ C, possible reactions in the MgO/SiO₂ binary system are as follows:

$$SiO_2 + 2MgO = Mg_2SiO_4$$
 (2)

$$SiO_2 + MgO = MgSiO_3$$
(3)

$$Mg_2SiO_4 + SiO_2 = 2MgSiO_3$$
(4)

$$MgSiO_3 + MgO = Mg_2SiO_4$$
 (5)

Reactions 2, 3 and 5 are thermodynamically favoured at a wide range of temperatures, while reaction 4 is thermodynamically possible only up to $1464^{\circ}C$ [3]. Reaction 2, however, is much more favourable in the temperature range of interest. This may explain, at least partially, the persistent appearance of MgSiO₃ together with Mg₂SiO₄ in all XRD patterns obtained for the products of reaction between MgO and SiO₂ at 1200° and 1500°C. The formation of MgSiO₃ may also be attributed to reaction 4 which, although it is the least favourable thermodynamically, may be kinetically faster than the other reactions. This question will be addressed in a future study.

Fig. 5 XRD patterns of the MgO/SiO₂ mixtures: a) 1.8/1, heated to 1500°C; b) 2.7/1, heated to 1500°C; c) 2/1, maintained for 1h at 1500°C; d) 2/1, maintained for 1h at 1200°C

The appearance of MgO and SiO_2 in the XRD patterns of samples heated to 1200°C (even after maintaining the sample isothermally at this temperature for an

hour) indicates that solid-solid reactions taking place in this binary system are very slow. By heating to 1500°C, more reaction seems to have taken place, but still residual SiO₂ and MgO were evident in the product. The depletion of SiO₂ was evident only when the mixture was heated to 1500°C and maintained isothermally at this temperature for an hour. With even longer time at 1500°C, reaction 5 may proceed to completion with the formation of Mg₂SiO₄

In conclusion, the reaction between SiO₂ and MgO seems to proceed slowly with the formation of Mg₂SiO₄ and MgSiO₃ at temperatures up to 1500°C, but significant amounts of unreacted SiO₂ and MgO remain in the product. More reaction took place in mixtures that were maintained isothermally for one hour at 1500°C. With longer time at this temperature it is likely that the reaction would proceed to completion with formation of Mg₂SiO₄, the desirable product.

* * *

The authors thank G. Mathieu for valuable discussions, L. J. Wilson for the thermodynamic calculations and P. Carrire in the Mineralogy Section, CANMET, for the Xray diffraction analyses.

References

- 1 F. Habashi, Advances in asbestos science, Paper presented at the International Conference on Asbestos Products, Kuala Lumpur, Malaysia, November 1991.
- 2 A. Muan and E. F. Osborn, Phase equilibria among oxides in steelmaking, Addison-Wesley, Reading, Massachusetts, 1965.
- 3 L. J. Wilson, CANMET, Energy, Mines and Resources Canada, Thermodynamic calculations using the FACT system, November 1991.

Zusammenfassung — Mittels Thermoanalyse und Röntgendiffraktion (zur Identifizierung der Reaktionsprodukte) wurde die Reaktion zwischen SiO₂ und MgO bei Temperaturen bis zu 1500°C untersucht. Es handelt sich um eine langsam verlaufende Reaktion, welche neben geringen Mengen von SiO₂·nH₂O und unreagierten Restmengen von SiO₂ und MgO die Bildung von Mg₂SiO₄ und MgSiO₃ zur Folge hat. Eine vollständige Reaktion des Ausgangsmateriales zu Mg₂SiO₄ kann nur durch ein längeres (1 h) Behandeln der Probe bei 1500°C erreichen.